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Optimum Accelerated Overrelaxation Method 
in a Special Case 

By G. Avdelas and A. Hadjidimos 

Absbact. In this paper we give the optimum parameters for the Accelerated Overrelaxation 
(AOR) method in the special case where the matrix coefficient of the linear system, which is 
solved, is consistently ordered with nonvanishing diagonal elements. Under certain assump- 
tions, concerning the eigenvalues of the corresponding Jacobi matrix, it is shown that the 
optimum AOR method gives better convergence rates than the optimum SOR does, while in 
the remaining cases the optimum AOR method coincides with the optimum SOR one. 

1. Introduction. For the numerical solution of the linear system 

(1.1) Ax= b, 
where A is a nonsingular matrix with nonvanishing diagonal elements of order N, x 
and b N-dimensional vectors with x unknown and b known, a linear stationary 
two-parameter iterative scheme, called Accelerated Overrelaxation (AOR) method, 
was introduced in [1] by the second of the present authors. Assuming, without loss 
of generality, that A can be split as follows 

A = I - L - U, 
where I is the unit matrix of order N and -L and - U are the strictly lower and 
upper triangular parts of A, respectively, the AOR scheme of [1] has the form 

(1.2) 
X(nI)= (I-L)-L'[(1 - r)I + (r - w)L + rU]x(n) + r(I -L)-'b, 

n = 0, 1, 2,.... 

In (1.2) X(0 is any arbitrary N-dimensional vector and r # 0 and w are two 
parameters called acceleration and overrelaxation factors, respectively. As was 
noticed in [1], when (r, w) = (1, 0), (1, 1), (r, 0) and (w, w), (1.2) reduces to the 
Jacobi, Gauss-Seidel, Simultaneous Overrelaxation and Successive Overrelaxation 
methods, respectively; see e.g. [2], [3] and [4]. It was also noticed there that for 
w # 0 the AOR method is an extrapolation of the SOR method with relaxation 
factor w and extrapolation factor r/w. In the special case where A is a consistently 
ordered matrix, a relationship between the eigenvalues A of the AOR iterative 
matrix, given by 

(1.3) Lr,e,, = (I- wL)1'[ (I - r)I + (r - w)L + rU], 

and the eigenvalues It of the corresponding Jacobi matrix Ll0 was established in 
[1]. This is the following 

(1.4) A2 - [ 2(I - r) + rWtL2 ]A + (r - 1)2 + (o - r) rtL2 = 0. 
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It is the purpose of this paper to give the optimum parameters (and therefore the 
optimum AOR method) in this special case in such a way that the spectral radius 
of (1.3) is minimized. This is what we do in the next section under the additional 
assumptions that the eigenvalues of L1,0 are all real and less than 1 in modulus, as, 
for example, in the case where A is symmetric and positive definite. 

2. Determination of the Optimum Parameters. Let A. I i = l(l)N be the real 
eigenvalues of L1 0, which are less than one in modulus. We define 

0 < t _ min IAI < maxI iji4i = 1. 
_ , I 

If now X1 and X2 are the two roots of (1.4) in terms of I E [ I, ii], r E (-oo, + oo) 
and X E (-x, + oo), then the problem of minimizing the spectral radius (1.3) is 
that of determining the pair (r, w) which minimizes the following expression 

(2.1) min{max{max{JX1J, X2J}}} 

with respect to (wrt)w. In (2.1) we do not impose any extra restrictions on the 
parameters in order to have it less than 1, since we already know that for 
r = X = 2/(l + (1 - -i2)1/2) (i.e. in the optimum SOR method) the corresponding 
spectral radius is less than 1. Therefore, in what follows, our objective will be that 
of determining local minima for the expression (2.1), which may be less (better) 
than the expression (1 - (1 - 1i2)1/2)/(l + (1- _i2)1/2), giving the spectral radius 
of the optimum SOR method, and among them, if there are any, to select the 
smallest one. It is noted that in the detailed analysis, which is rather elementary but 
very long and cumbersome and is not to be given here, the following basic cases 
are treated separately: 

(i) 0= , 

(ii) O< <i, 

(2.2) (iia) (1 - 2)1/2 < 1 - [2 

(iib) 1- 2 < (I - 2)1/2 

(iii) O < y=y 

In each one of the cases (2.2), we consider various intervals from which the 
parameter w can take its values, and for each one of these we consider other 
intervals associated with the parameter r. Thus, we have to examine a tremendous 
number of cases and this is the reason why we cannot present the detailed analysis 
here. However, for the interested reader we give, in what follows, the essential 
elements on which the aforementioned analysis is based. 

First, we consider the expression D(j) -22 _ 4w + 4, which is one of the 
factors of the discriminant of (1.4), the other being r2?2, and plays a very important 
role. We have therefore to distinguish three basic cases: 

A: D( j) < 0. This implies D( I) < 0 for any I E [ I, j], so that the roots of (1.4) 
are complex conjugate ones. Hence we shall have 

(2.3) E EI(r, w, It) max{JIXI, X21J} = ((1 -2)r2-(2 -o)r + 1)/2. 



OPTIMUM ACCELERATED OVERRELAXATION METHOD 185 

B: D( !L) > 0. It is implied that D( j) > 0 for any y E [ p, jfl, so that the roots of 
(1.4) are real. Consequently 

(2.4) E _ E2(r, A, t) max{JI1I, XA21} = (JHJ +Ioli(D(i))1/2)/2, 
where 

(2.5) H-H(r, , L)=2(1-r) + rw2. 

C: D(yi) < 0 < D(it). In this case there exists a real number pLd = 4(W - 1)/X2 
E [I, ji such that D( lid) = 0. Consequently, in order to find the quantity E for 
L e [y t Id] (2.3) has to be considered, while for ,t E[d, M-j (2.4) is to be taken. 
Thus, we have that 

(2.6) E _ maxt El (r, w, ) E2 (r, w, L)} 
IL[y 

( 1 /IC[ d, Al 

Secondly, we introduce some notations. Thus, the four roots of the two quadratics 
D( i) and D( It) are denoted in their order of magnitude as in (2.7) below 

(1 

_ 2/ (1 + (1 
- 

2)1/2) - 

2012/ (i 
+ (1 - 

)l/2) 
(2.7) < (03 -2/(1 - (1 - - -2)1/2) < (4 _2/4 (-(I _ ( 

2)/2) 

where it is noted that for y = 0, Co = 1 and &04= X. Thirdly, we define the 
quantities 

(2.8) F _ max E, G _min F, p min G, 

which are very useful. And, finally, we state and prove three lemmas denoted by 
L1, L2, L3, respectively: 

LEMMA 1 (L1). If D( j) < 0 and r(w - r) < 0, F takes place for A = . 

PROOF. Since D( ji) < 0, E is given by the RHS of (2.3), or equivalently by the 
square root of the constant term of (1.4), it is evident from the last expression and 
from the fact that r(w - r) < 0, that F = max,A E = EI(r, (, u). 

LEMMA 2 (L2). If D(,u) > 0, then ( 2(C2 - 2( + 2) ? MLw(D(IL))12 > 0. 

PROOF. Because of the assumption we observe that 

A2(02 - 2co + 2 = (/I2(02 + D( t))/2 > 0. 

In order to prove the relationship given it is sufficient and necessary to prove that 
(p2(2 - 2w + 2)2 - L2co2( 2(2 - 4w + 4) = 4(W - 1)2 is greater than or equal to 
zero, which is true. 

LEMMA 3 (L3). If D(A;) > 0 and ( > 2/ji2, then (2 - (0-2) + ji(D( f))12 < 0. 

PROOF. Because of the second assumption, we have that 2 - 2 < 0. Hence, in 
order to prove the relationship given, it is sufficient and necessary to prove that 
(2 -i 2)2-2( 22 - 4w + 4) = 4(1 - j2) > 0, which always holds. 

After the detailed analysis takes place, we are able to give, as a summary, in a 
self-explained table, the optimum results which correspond to the basic cases (2.2). 
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TABLE 

Optimum Values 

Case Identification Overrelaxation Acceleration Spectral 
factor o factor r radius p 

i, t =0 1 @2 1 @ 1 1_(,_",~~~~1-(lA 21/2 
(i) 0 A2 O l 2 + /2 

..ia 0 < /A < A A 2_( 212yy 2)112 -- 

I + ( 

(iia) (1-I2 < 1- 2 (I2)(I + (2 _ 2)1/2 2)1/2(l + (1- _2)1/2) 

1/(l - 2)1/2 

(iii) O < _A 

(22 -l/(l - 0 

W2 iS given in (2.7). 

As is seen from the table of optimum values in the cases (i) and (iia), the 
optimum AOR method coincides with the optimum SOR one, while, in the cases 
(iib) and (iii), the optimum AOR is better than the optimum SOR. It should be 
pointed out that the optimum results of case (iii) were also obtained in [1]; see 
Theorem 3, Section 5. 

3. Numerical Examples. To show that, in the cases (iib) and (iii) of the table, the 

optimum convergence rates of the AOR method are much better than the corre- 

sponding ones of the optimum SOR, we present two numerical examples. In each 
one of them, the matrix coefficient A of system (1.1) is a consistently ordered 
matrix of order four and of the form I - L - U, so that the associated Jacobi 
matrices, their corresponding eigenvalues, and all the other optimum parameters 
involved are readily evaluated. 

(i) Let 

1 0 5 5 
71 113 

0 1 - 10 

16 1 1 0 
-; ; 

2 1 0 1 

The eigenvalues of its Jacobi matrix are ? +/_ /5 and ? 2V /5 so that yt 

= V\3 /5 and = 2V6 /5 < 1. These bounds satisfy the restrictions of case (iib) 
since 0 < = V2/5 < i = 2V /5 and 1 _ - 2 = 2/25 < (1-I2)112 = 1/5. 
Therefore the optimum values of the table apply. These, for the AOR method, are 
(r, w) = (-5/4, 5/3) and p(Lr,(0) = V4 /12, while for the SOR one these are 

(w, w) = (5/3, 5/3) and p(L,,,,,) = 2/3. It is readily seen that p(Lrw,) = V4 /12 < 

p(Ls,,,) = 2/3. 
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(ii) Let 

I 0 5 

0 1 _8 6 A ~~~~~5 5 
24 1 1 ? 0 
5 5 

12 ! 0 1 
L 5 5 

This time the eigenvalues of the Jacobi matrix are ? 2V6 /5, each one with 
multiplicity two. Thus 0 < y = 2V6 /5 = ii < 1. Since the restrictions of case (iii) 
are satisfied, the corresponding optimum values of the table apply. The optimum 
results for the SOR method are the same as before. However, the optimum results 
for the AOR method are (r, w) = (5, 5/3) and (r, o) = (-5, 5/2), where both pairs 

give p(Lr,w) = 0 < p(L,,,,,) = 2/3, that is, a drastic reduction in the convergence 
rates. 
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